Tuesday, August 21, 2012

MA2265-DISCRETE MATHEMATICS-ANNA UNIVERSITY SYLLABUS CSE| anna university syllabus for - MA2265-DISCRETE MATHEMATICS



MA2265-DISCRETE MATHEMATICS-ANNA UNIVERSITY SYLLABUS CSE| anna university syllabus for - MA2265-DISCRETE MATHEMATICS


            CLICK HERE FOR ALL SUBJECTS 

MA2265                                    DISCRETE MATHEMATICS                                 L T P C
3  1 0  4
AIM
To  extend  students  Logical  and  Mathematical  maturity  and  ability  to  deal  with abstraction and to introduce most of the basic terminologies used in computer science courses and application of ideas to solve practical problems.

OBJECTIVES
At the end of the course, students would
·          Have knowledge of the concepts needed to test the logic of a program..
·          Have an understanding in identifying structures on many levels.
·          Be aware of a class of functions which transform a finite set into another finite set which relates to input output functions in computer science.
·          Be aware of the counting principles
·          Be exposed to concepts and properties of algebraic structures such as semi groups, monoids and groups.

UNIT I           LOGIC AND PROOFS                                                                           9 + 3


Propositional  Logic   Propositional  equivalences-Predicates  and  quantifiers-Nested
Quantifiers-Rules of inference-introduction to Proofs-Proof Methods and strategy

UNIT II           COMBINATORICS                                                                               9 + 3
Mathematical inductions-Strong induction and well ordering-.The basics of counting-The pigeonhole principlePermutations and combinations-Recurrence relations-Solving Linear  recurrence  relations-generatinfunctions-inclusion  and  exclusion  and applications.

UNIT III             GRAPHS                                                                                           9 + 3
Graphs and graph models-Graph terminology and special types of graphs-Representing graphs and graph isomorphism -connectivity-Euler and Hamilton paths

UNIT IV          ALGEBRAIC STRUCTURES                                                             9 + 3
Algebraic systems-Semi groups and monoids-Groups-Subgroups and homomorphisms- Cosets and Lagranges theorem- Ring & Fields (Definitions and examples)

UNIT V          LATTICES AND BOOLEAN ALGEBRA                                             9 + 3
Partial ordering-Posets-Lattices as Posets- Properties of lattices-Lattices as Algebraic systems Sub lattices –direct product and Homomorphism-Some Special lattices- Boolean Algebra
L: 45, T: 15, TOTAL: 60 PERIODS

TEXT BOOKS:
1.  Kenneth  H.Rosen,  “Discrete  Mathematics  and  its  Applications,  Special  Indian edition, Tata McGraw-Hill Pub. Co. Ltd., New Delhi, (2007).  (For the units 1 to 3, Sections 1.1 to 1.7 , 4.1 & 4.2, 5.1 to 5.3, 6.1, 6.2, 6.4 to 6.6, 8.1 to 8.5)
2.  Trembly J.P and Manohar R, “Discrete Mathematical Structures with Applications to Computer Science, Tata McGrawHill Pub. Co. Ltd, New Delhi, 30th  Re-print (2007).(For units 4 & 5  , Sections 2-3.8 & 2-3.9,3-1,3-2 & 3-5, 4-1 & 4-2)

REFERENCES:
1.  Ralph P Grimaldi “Discret an Combinatoria Mathematics:   A Applied
Introduction, Fourth Edition, Pearson Education Asia, Delhi, (2002).
2. Thomas Koshy, ”Discrete Mathematics with Applications, Elsevier Publications, (2006).
3.  Seymour Lipschutz and Mark Lipson, ”Discrete Mathematics, Schaum’s Outlines, Tata McGraw-Hill Pub. Co. Ltd., New Delhi, Second edition, (2007).


8/21/2012 12:51:00 PM

0 comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...